Innervation and target tissue interactions induce Rab-GDP dissociation inhibitor (GDI) expression during peripheral synapse formation in developing chick ciliary ganglion neurons in situ.
نویسندگان
چکیده
Regulated exocytosis of neurotransmitter from synaptic vesicles involves the function of a small GTP-binding protein, Rab3A. Rab-GDP dissociation inhibitor (GDI) is an important modulator of Rab function and subcellular distribution. We have characterized the respective roles of innervation and target tissue interactions in regulating GDI expression during synapse formation in chick ciliary ganglion (CG) neurons developing in situ. Here we report the first full-length chick GDI cDNA sequence. It is highly homologous to mammalian GDI isoforms and includes all of the sequence-conserved regions critical for Rab3A binding. This chick GDI mRNA is predominantly expressed in neurons as judged by Northern blot analysis of tissue distribution and by in situ hybridization of CG sections. Developmental increases in CG GDI mRNA levels occur in two phases as determined by reverse transcription (RT)-PCR and by Northern analysis of both normal-developing and input- or target tissue-deprived ganglia. The initial phase appears to be independent of cell-cell interactions. In contrast, the second, larger increase is induced by both presynaptic inputs and postganglionic target tissues but does not occur until target tissue innervation. Synaptic interaction with the target seems necessary for the regulatory response to both inputs and target tissues. GDI protein levels show similar changes. The developmentally delayed ability of inputs and targets to influence GDI levels differs from the regulation of neurotransmitter receptor expression in CG neurons. These results suggest that distinct extrinsic regulatory signals influence the expression of synapse-related components at the presynaptic axon terminal versus postsynaptic membrane in an individual neuron.
منابع مشابه
Reduced levels of acetylcholine receptor expression in chick ciliary ganglion neurons developing in the absence of innervation.
Chick ciliary ganglion neurons receive innervation from a single source, the accessory oculomotor nucleus (AON), and nicotinic ACh receptors (AChRs) mediate chemical synaptic transmission through the ganglion. Previous experiments examining the developmental expression of AChRs in embryonic chick ciliary ganglion neurons in situ have shown that AChR levels increase substantially in the neurons ...
متن کاملInnervation and target tissue interactions differentially regulate acetylcholine receptor subunit mRNA levels in developing neurons in situ
Neurons engage in two distinct types of cell-cell interactions: they receive innervation and establish synapses on target tissues. Regulatory events that influence synapse formation and function on developing neurons are largely undefined. We show here that nicotinic acetylcholine receptor (AChR) subunit transcript levels are differentially regulated by innervation and target tissue interaction...
متن کاملTarget tissues and innervation regulate the characteristics of K+ currents in chick ciliary ganglion neurons developing in situ.
The expression of appropriate ensembles of ionic channels is necessary for the differentiation and normal function of vertebrate neurons. Cell-cell interactions may regulate the expression and properties of ionic channels in embryonic neurons. Previous studies have shown that the expression of A-type K+ channels (IA) and Ca2+-activated K+ channels (lK[Ca]) is abnormal in chick ciliary ganglion ...
متن کاملPosttranslational Regulation of Ca2+-Activated K+ Currents by a Target-Derived Factor in Developing Parasympathetic Neurons
Macroscopic IK[Ca is not expressed in normal levels in chick ciliary ganglion (CG) neurons prior to synapse formation with target tissues, or in neurons developing in vitro or in situ in the absence of target tissues. Here, two chick CG slo partial cDNAs encoding IK[Ca channels were isolated, cloned, and sequenced. Both slo transcripts were readily detected in developing CG neurons prior to or ...
متن کاملHsp90 Co-localizes with Rab-GDI-1 and regulates agonist-induced amylase release in AR42J cells.
Rab proteins are small GTPases required for vesicle trafficking through the secretory and endocytic pathways. Rab GDP-dissociation inhibitor (rab-GDI) regulates Rab protein function and localization by maintaining Rab proteins in the GDP-bound conformation. Two isoforms of rab-GDI are present in most mammalian cells: GDI-1 and GDI-2. It has recently been demonstrated that a Heat shock protein 9...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 16 شماره
صفحات -
تاریخ انتشار 1998